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Abstract. The transient dynamics of a quantum linear amplifier during the transition from damping to
amplification regime is studied. The master equation for the quantized mode of the field is solved, and the
solution is used to describe the statistics of the output field. The conditions under which a nonclassical
input field may retain nonclassical features at the output of the amplifier are analyzed and compared to
the results of earlier theories. As an application we give a dynamical description of the departure of the
system from thermal equilibrium.

PACS. 42.50.Ar Photon statistics and coherence theory – 42.50.Dv Nonclassical states of the electromag-
netic field, including entangled photon states; quantum state engineering and measurements – 42.50.Lc
Quantum fluctuations, quantum noise, and quantum jumps

1 Introduction

The master equation describing linear amplification or
gain has been a prototype for discussing many questions
in Quantum Optics. It was derived by the elimination of
an unobserved environment using what has been termed a
Born-Markov approximation [1]. Thus its properties were
mainly determined by physical considerations, but it ar-
rived at a form later to be shown to be the consistent
generator of dissipative time evolution in quantum the-
ory; thus it is of the Lindblad form [2].

The master equation for linear amplification was ear-
lier represented as the generic model for an optical ampli-
fier or attenuator [3]. It also describes the onset of laser
oscillations until the time when nonlinear saturation starts
to affect the behavior. In the trapped ion context, when
the ion trap potential is regarded in a harmonic approx-
imation, the cooling by lasers may be considered as an
attenuation described by the same equation [4].

Its advantage is that it is exactly solvable, which allows
us to follow the onset of gain or the damped approach to a
steady state. The exact solution also allows us to evaluate
the noise properties exactly and investigate the fading of
nonclassical features of the initial state.

In all applications so far, the amplifying and attenu-
ating coefficients of the equation have been regarded as
constants. This corresponds to the assumption that the
population inversion is instantaneously reached and the
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evolution starts from an initial state experiencing no pre-
vious evolution. Such theory, however, does not describe
the transient dynamics of the linear amplifier, i.e. the dy-
namics when the pumping field is switched on or off. In
this paper we generalize the previous theory of linear am-
plifiers to the case in which a smooth onset of amplification
or attenuation takes place, and hence the amplifying and
attenuation coefficients are time dependent. We solve the
master equation with time dependent coefficients in terms
of the characteristic function [5,6] and we use the solution
to describe the transient dynamics of the linear quantum
amplifier, one of the most widely used and common de-
vices in quantum optics.

We choose to consider a situation where the gain
medium is switched smoothly from an attenuating regime
to an amplifying one. This takes place within a time inter-
val centered at some definite time, before which we have
a damped situation. Thus the initial gain, which is nor-
malized to unity of course, decreases first until the ampli-
fication coefficient changes sign and gain starts to grow.
The model allows us to follow the solution through this
point, and we can see how the time dependence affects
the noise properties and the possibility to retain initially
imposed nonclassical features of the system state. As we
may expect, the situation is more complicated than the
simple constant coefficient case. It is, however, possible to
retain earlier results on amplifier added noise and quan-
tum cloning limits by considering the appropriate limiting
cases.
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Theoretical works on optical transients of physical phe-
nomena which cause amplification of light have received
in the past a huge deal of attention [7]. To the best of the
authors’ knowledge, however, this is the first analytic de-
scription of the transient of phase-insensitive quantum lin-
ear amplifiers. Therefore the results presented in this pa-
per give a clear contribution to the fundamental research
in the theory of lasers and optical amplifiers since every
linear amplifier or laser undergoes a transient behavior
before stabilizing.

Our results can be directly applied to describe tran-
sients in technological applications based on linear ampli-
fiers. Optical linear amplifiers are essential components of
state-of-the-art optical networks. In order to attain best
performances of the networks, however, it is crucial to
analyze the behavior of linear amplifiers during power
transients causing fast switching on and off of the am-
plifiers [8]. Although the linear amplifiers currently used
in optical networks do not need to operate at the quan-
tum level, the recent development of quantum technologies
such as quantum communication, quantum cryptography
and quantum computation, is based on the implementa-
tion of networks containing nanodevices and nanocompo-
nents operating at the quantum level.

Recently a scheme for optimal cloning of coherent
states with phase-insensitive linear amplifiers and beams
splitters has been proposed [9]. Recent advances in the
field of nanoelectromechanical systems have paved the
way to the realization of experiments close to achieve the
quantum limited detection and amplification. In [10], po-
sition resolution very close to the quantum limit is ob-
tained, demonstrating the near-ideal performance of a
single-electron transistor as a linear amplifier. Another re-
cent application of linear amplifiers consists in a method
for reconstructing a multimode entangled state [11]. Also
quasiprobability functions have been shown to be mea-
surable via direct photodetection of a linear amplified
field [12].

The paper is structured as follows. Section 2 summa-
rizes the results of earlier investigations for easy compar-
ison with the present results. Section 3 presents the solu-
tion for time dependent coefficients and discusses its main
properties. In Section 4 we discuss the possibilities to re-
tain nonclassical features in the output of the amplifier
relating our results to earlier calculations. In Section 5 we
discuss the emergence of thermal features in the solution.
Finally Section 6 concludes the discussion of the work.

2 Review on phase insensitive narrow band
linear amplifiers

The simplest standard amplifier configuration consists of
an assembly of N two-level atoms, of which N2 are ex-
cited and N1 are unexcited, interacting with a single-mode
quantum field. It is assumed that the field frequency is res-
onant with the atomic frequency and that the population
of the two-level atoms is partly inverted, i.e. N2 > N1.
This is the standard model of a laser; its linear operation

regime describes an amplifier [1]. In the standard descrip-
tion of linear amplifiers it is assumed that N2 and N1 are
maintained approximately constant in time by some pump
and loss mechanism.

Starting from a microscopic description of the interac-
tion between the two-level atoms and the quantum mode,
it is possible to derive the following master equation for
the field mode in the interaction picture [1]

dρ

dt
= − C

2
[
a†aρ − 2aρa† + ρa†a

]

− A

2
[
aa†ρ − 2a†ρa + ρaa†] , (1)

with a and a† annihilation and creation operator of the
quantum harmonic oscillator and

A =
2g2

γ2
r2, (2)

C =
2g2

γ2
r1, (3)

where g is the coupling strength of the interaction between
the two-level atoms and the mode of the field, ri = Ni/γ
(with i = 1, 2) is the pumping rate into the atomic level i,
and γ is a rate of the same order of the atomic linewidth.

A relevant quantity in the dynamics is the linear gain
(or damping) factor, describing the linear growth (loss) of
energy in the mode,

W = A − C. (4)

When W > 0, the master equation describes a linear am-
plifier, when W < 0 it describes a linear absorber. The
constant A gives the noise provided by the spontaneous
emission; this term is present even if the mode energy is
initially zero.

The time evolution of the amplitude of the field is de-
scribed by the equation:

〈a〉out ≡ 〈a(t)〉 = G1/2e−iω0t〈a〉in, (5)

where 〈a〉in = 〈a(t = 0)〉, ω0 is the frequency of the radi-
ation field and the gain G is defined as

G = eWt. (6)

The gain is greater than 1 for linear amplifiers and smaller
than 1 for linear attenuators. The solution of the Fokker-
Plank equation for the Glauber-Sudarshan P representa-
tion of the density matrix (P function) can be used to cal-
culate the transformation of any incoming Pin(α) function
by the amplifier:

Pout(α) =
∫

dα0P (α, t|α0)Pin(α0) (7)

where

P (α, t|α0) =
1

πm(t)
exp

[

−
∣
∣α − G1/2e−iω0tα0

∣
∣2

m(t)

]

(8)
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is the amplifier transfer function [13]. The time dependent
width is given by

m(t) = A [G(t) − 1] /W. (9)

This quantity represents the average photon number of
the spontaneous emission field [1]. Note that, for a linear
amplifier, the gain grows asymptotically to infinity for t →
∞, and so does the width [3]. For an absorber, on the other
hand, the asymptotic value of the width m(t) is finite.

By using equations (7) and (8) one can calculate the
noise of the output field, defined as the symmetrically or-
dered fluctuations of the field mode [14]:

|∆a|2out =
1
2
〈a†a + aa†〉out − 〈a〉out〈a†〉out

= G|∆a|2in + m(t) − 1
2
(G − 1)

≡ G
(|∆a|2in + A)

, (10)

where

A =
1
2

(
A + C

A − C

) (
1 − 1

G

)
, (11)

is the equivalent noise factor, or amplifier added noise, in-
troduced by Caves [14]. This quantity describes the fluc-
tuations of the internal modes of the amplifying medium.
Since the input field and the internal modes of the am-
plifying medium are uncorrelated, their fluctuations add
in quadrature and they are both amplified. The minimum
value of the added noise for infinite gain, e.g. for t → ∞,
is given by the Caves limit:

AC =
1
2

(
A + C

A − C

)
=

1
2

+ θ ≥ 1
2
, (12)

where the excess noise factor θ gives the initial mean num-
ber of excitations of the internal modes of the medium,
and therefore approaches zero when the initial tempera-
ture of the amplifying medium vanishes, T → 0.

It has been demonstrated that the output field of a
phase insensitive narrow band linear amplifier may possess
nonclassical features only if the input field is nonclassical.
However, as the amplifier gain increases, any nonclassi-
cal feature of the light, which was present in the input
field, tends to be lost. In particular, subPoissonian statis-
tics and squeezing are lost when the gain G exceeds the
value 2 [1,13].

In the next section we present a theory describing
the transient regime of the amplification process. In other
words, we will drop the assumption that N2 and N1 are
constant and we will describe the onset of the amplifica-
tion process from an initial damping regime. Our aim is
to study the transient dynamics and to investigate how
the results for the standard amplifier, described in this
section, are modified.

3 Transient regime of linear amplification

Previous work on linear amplifiers deals with a situation
in which the amplifying medium, e.g. an assembly of two-
level atoms, satisfies the population inversion condition

required to amplify an input field. In order to reach the
inverted population condition it is necessary to pump the
atoms from their initial thermal condition till the point
in which N2 > N1. During this transient regime the
pumping rates to levels 2 and 1 (r2(t) and r1(t)) change
with time till they reach a stationary value for which
N2/N1 ∝ r2/r1 > 1 (amplification regime). In this case,
the time evolution of the field mode is described by a mas-
ter equation of the same form of equation (1), but with
time dependent coefficients A(t) and C(t). Similarly, if one
switches off the external pump, the ratio of the atomic
populations N2/N1 will tend to the Boltzmann factor and
the amplification process will eventually stop, the system
approaching its thermal equilibrium. In the following we
consider the first of these two situations, i.e. the onset of
amplification due to the creation of population inversion
in an initially damping medium. In more detail, we con-
sider the case in which

A(t) =
2g2

γ2
r2(t) = A

eε(t−t0)

eε(t−t0) + e−ε(t−t0)
+ B, (13)

C(t) =
2g2

γ2
r1(t) = A

e−ε(t−t0)

eε(t−t0) + e−ε(t−t0)
+ B, (14)

where ε is the rate of change of the pumping coefficients,
that is the amplification onset rate. We assume that at
t = −∞ the state of the ensemble of two-level atoms con-
stituting the amplifying medium is thermal, that is

N2(t → −∞)
N1(t → −∞)

=
A(t → −∞)
C(t → −∞)

=
B

A + B
(15)

= e−�ω0/kBT ,

which implies B/A = (e�ω0/kBT − 1)−1 = nM , with nM

mean number of excitations of the medium. We assume
that the state of the amplifying medium practically does
not change in the time interval −∞ < t ≤ 0.

Under these conditions the asymptotic gain factor
W (t) takes the form

W (t) = A(t) − C(t) = A tanh[ε(t − t0)]. (16)

Note that, for t < t0, W (t) < 0 and the system behaves
as an absorber, while for t > t0, W (t) > 0 and the system
behaves as an amplifier. Therefore t0 indicates the time
at which the amplification process begins. From equa-
tion (16) we infer that the constant A is the asymptotic
gain factor. Finally we stress that, for t → ∞,

N2(t → ∞)/N1(t → ∞) = A(t → ∞)/C(t → ∞)
= (A + B)/B = N1(t → −∞)/N2(t → −∞), (17)

i.e., the population of the exited (ground) state tends
asymptotically to the initial population of the ground (ex-
cited) state.

3.1 The master equation and its solution

The master equation describing the transient behavior of
the amplification process, in the interaction picture, is the
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following

dρ

dτ
= − A′(τ)

2
[
aa†ρ − 2a†ρa + ρaa†]

− C′(τ)
2

[
a†aρ − 2aρa† + ρa†a

]
, (18)

with

A′(τ) = A′ e(τ−τ0)

e(τ−τ0) + e−(τ−τ0)
+ B′, (19)

C′(τ) = A′ e−(τ−τ0)

e(τ−τ0) + e−(τ−τ0)
+ B′. (20)

In the previous equations we have introduced the relevant
physical dimensionless parameters τ = εt, τ0 = εt0, A′ =
A/ε and B′ = B/ε. As we will see in the following, the
parameter A′, which is the ratio between the asymptotic
gain factor and the rate of onset of the amplification, plays
a central role in the system dynamics. Indeed both the
gain G(τ) and the added noise depend crucially on this
parameter.

Following the method developed in [5] we solve the
master equation given by equation (18) in terms of
the quantum characteristic function (QCF) [15], defined
through the equation

ρS(τ) =
1
2π

∫
χτ (ξ) e(ξ∗a−ξa†)d2ξ. (21)

The solution reads as follows

χτ (ξ) = e−∆(τ)|ξ|2χ0

(
G1/2(τ)e−i(ω0/ε)τ ξ

)
, (22)

where χ0 is the QCF of the initial state of the field, ω0 is
the field frequency and the G(τ) is the gain, given by

G(τ) = e
∫

τ
0 W (τ ′)dτ ′

. (23)

The quantity ∆(τ), appearing in equation (22) is defined
as follows

∆(τ) =
1
2
[G(τ)]

∫ t

0

[G(τ ′)]−1 [C′(τ ′) + A′(τ ′)] dτ ′. (24)

It is worth underlining that the solution given by equa-
tion (22), with the help of equations (23, 24), holds what-
ever the explicit time dependence of the coefficients A(τ)
and C(τ), appearing in equation (18), is. The case con-
sidered in the paper [Eqs. (13, 14)] has been chosen to
illustrate the transient dynamics in a physically reason-
able and well justified model. Indeed equations (13, 14)
describe a situation in which from an initial condition
in which N1 > N2, the populations of the two-level sys-
tems constituting the amplifying medium pass smoothly
to the inversion condition N2 > N1 necessary for ampli-
fication. In passing, we note that the hyperbolic tangent
time dependence is one of the most commonly adopted
phenomenological models in the description of transients
of physical systems.

2 4 6 8 10

0.02
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0.06

0.08

0.1

0.12

G
(τ
)

τ
Fig. 1. Time evolution of G(τ ) for A′ = 2, 3, 4, 5.5 (increasing
values of A′ correspond to decreasing thickness of the line) and
τ0 = 5.

Starting from equation (22), one can calculate the
Wigner function, the Glauber-Sudarshan P function, and
the Husimi Q function by means of the relation [15]

Wτ (α, p) =
1
π2

∫ ∞

−∞
d2ξχτ (ξ) exp(αξ∗ − α∗ξ)e(p|ξ|2/2),

(25)
where p = −1, 0, 1 corresponds to the Q, Wigner, and
P functions, respectively. In particular, carrying out the
calculations, it turns out that the P function has the same
form of equation (8), but with G(τ) given by equation (23)
and m(τ) = [G(τ) − 1] /2 + ∆(τ).

Inserting equation (16) into equation (23) and carrying
out the integration yields

G(τ) =
[
cosh(τ − τ0)

cosh(τ0)

]A′

. (26)

It is not difficult to prove that, for τ0 = 0, and in the limit
of infinitely fast onset of the amplification (ε → ∞), the
gain function tends to G(t) = eAt = eWt [see Eq. (6)].

In Figure 1 we plot the gain G(τ) for four increasing
values of A′. As clearly shown in the figure for increas-
ing values of A′ the values of the gain in proximity of the
amplification time τ0 become smaller and smaller. This is
because small values of A′ correspond to small values of
the asymptotic gain factor or, equivalently, to a very slow
amplification onset rate. In general, the gain decreases for
times smaller than τ0 and, as expected, starts to increase
after the amplification sets in, even if G(τ) > 1 only for
times τ > 2τ0. Note that the standard theory of linear am-
plification predicts that for a linear amplifier it is always
G(τ) > 1 (see Sect. 2). However, if one takes into account
the transient regime characterizing the initial dynamics
of every linear amplifier it turns out that there exist an
interval of time at which, although W > 0, there is still
no gain. The reason why the gain becomes greater than 1
only after the time 2τ0 is that for 0 < τ < τ0 the system
is in a damping regime, and hence the gain decreases. It
takes exactly another interval of time τ0 after the onset
of the amplification process to undo the initial decrease
in the gain. At τ = 2τ0 we have G(2τ0) = G(0) = 1 af-
ter which the gain increases monotonically. This is a new
feature brought to light by our theory.
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Let us focus on the quantity ∆(τ). Inserting equa-
tion (26) into equation (24) we get

∆(τ) = G(τ)
A′ + 2B′

2

∫ τ

0

[
cosh(τ ′ − τ0)

cosh(τ0)

]−A′

dτ ′

≡ G(τ)
A′ + 2B′

2
IA′(τ − τ0). (27)

For τ0 = 0 and for each A′ real, with A′ 	= 1, we have

IA′(τ) =
sinh τ

(A′ − 1)
1

(cosh τ)A′−1

× F [1, 1 − A′/2, 3/2− A′/2; (cosh τ)2], (28)

with F [1, 1−A′/2, 3/2−A′/2; (cosh τ)2] being the hyperge-
ometric function of the variable x = (cosh τ)2. For A′ = 1
the integral appearing in equation (27) is simply equal to

I1(τ) = 2 arctan(eτ ). (29)

The mathematical expression of the added noise in the
special case of integer values of A′ is discussed in Ap-
pendix A. For τ0 	= 0, one gets

∆(τ) = G(τ)
A′ + 2B′

2
cosh(τ0)A′

× [IA′(τ − τ0) + IA′(τ0)] , (30)

where IA′(τ − τ0) and IA′(τ0) are obtained from equa-
tion (28) by substituting for the variable τ the expressions
τ − τ0 and τ0, respectively.

3.2 Noise of the output field

From the QCF solution given by equation (22) we can
easily calculate the mean values of observables of inter-
est, e.g. those characterizing the output field statistics, by
means of the relation [15]

〈a†man〉 =
(

d

dξ

)m (
− d

dξ∗

)n

e|ξ|
2/2χ(ξ)

∣
∣∣
∣
ξ=0

. (31)

We look first of all at the symmetrically ordered fluctua-
tion, as defined by Caves [14]

|∆a|2out = G(τ)|∆a|2in + ∆(τ)
= G(τ)

[|∆a|2in + A(τ)
]
, (32)

The added noise is given by

A = ∆(τ)/G(τ), (33)

with ∆(τ) given by equation (30). This quantity is clearly
different from the one given by equation (11) for the stan-
dard linear amplifier case. It is possible to show that for in-
finite gain, e.g. for τ → ∞, this quantity is always greater
or equal to AC , AC being the Caves limit for an infinitely
fast onset of the amplification process.
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W

τ

Fig. 2. Damping and amplification of an initial input field
having 〈a(t = 0)〉 = 10, for τ0 = 4, A′ = 0.5 and B′ =
0.5 × 10−2. The dashed lines indicate signal width ∆(τ )1/2.
The insert shows the gain factor W (τ ) = A(τ ) − C(τ ) in the
same time interval and for the same values of the parameters.

In order to derive the Caves limit from equation (33),
we note that for τ → ∞, IA′ , as given by equation (28),
tends to [16]

I∞A′ =
√

π

2
Γ (A′/2)

Γ [(A′ + 1)/2]
. (34)

Therefore the asymptotic value of the added noise is

A =
A′ + 2B′

2
IA′ → A′ + 2B′

2

√
π

2
Γ (A′/2)

Γ [(A′ + 1)/2]

=
(

1
2

+
B

A

)√
π

Γ (A′/2 + 1)
Γ [(A′ + 1)/2]

. (35)

The Caves limit is obtained for an infinitely fast onset of
the amplification process, that is for ε → ∞, i.e. A′ → 0.
Substituting A′ = 0 into equation (35), and remembering
that Γ (1) = 1 and Γ (1/2) =

√
π, one gets

AC =
1
2

+
B

A
≥ 1

2
, (36)

that is the Caves limit [see Eq. (12)]. From equation (35)
one can see that, for fixed values of the initial mean num-
ber of excitations of the medium nM = B/A, AC is actu-
ally the smallest asymptotic value of the added noise.

A careful analysis of the noise at the output field, as
given by equation (32), shows that this quantity, as one
would expect, increases monotonically with time whatever
the initial state is. In Figure 2 we show the dynamics of
an input field which is damped for τ < τ0 = 4 and then
amplified for τ > τ0 = 4. The figure shows that the width
of the signal always increases. In the following section we
will study in more detail the transient dynamics for differ-
ent types of input fields. Since we are dealing with phase
insensitive amplifiers/absorbers, it turns out that it is not
possible to generate nonclassical states from classical in-
put fields. However, it is possible to analyze how the con-
ditions to retain initial nonclassical features are modified
due to the transient dynamics. In addition we will look at
the field statistics by explicitly calculating the time evo-
lution of the Wigner function.
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4 Nonclassical properties of the output field

4.1 Squeezing and subPoissonian statistics

Let us begin studying the conditions for which the output
field can retain squeezing properties when the input state
is a squeezed state of the electromagnetic field. We define
the dimensionless quadratures of the field as follows

u =
1√
2

(
a + a†) , (37)

v =
−i√

2

(
a − a†) . (38)

The squeezed states satisfy the minimum uncertainty re-
lation ∆u∆v = 1/2, but are characterized by an unequal
distribution of the quantum fluctuations

∆u =
s√
2
, ∆v =

1√
2s

, (39)

with s 	= 1. Introducing the rotating coordinates

ũ = u cos(ω0t) − v sin(ω0t), (40)
ṽ = v cos(ω0t) + u sin(ω0t), (41)

and using equation (31) we get

(∆ũ)2out = G(τ)
[
(∆ũ)2in + A]

, (42)

(∆ṽ)2out = G(τ)
[
(∆ṽ)2in + A]

, (43)

with A given by equations (33) and (27). For an input
squeezed state having s < 1, the output can remain
squeezed if and only if

G(τ)
[
(∆ũ)2in + A]

<
1
2
. (44)

It is possible to show that the maximum allowed value of
the gain G(τ), in order to retain squeezing at the output,
decreases with A′ and B′. In other words, for increasing
values of A′ and B′, one can retain squeezing only for
smaller and smaller values of the gain (less efficient am-
plification). Having in mind equation (30), one finds that,
for τ0 = 0, the output field is still squeezed if the gain
satisfies the following inequality

G(τ) <
1

s2 + (A′ + 2B′)IA′ (τ)
. (45)

It is worth recalling the standard result for phase insen-
sitive linear amplifiers, which states that the upper limit
for the gain compatible with squeezing at of the output
field is G = 2, the magic number for photon cloning [13].
The analysis of the behavior of the gain in our case is
more complicated, since the r.h.s. of the inequality (45)
depends on time. A numerical study shows that, although
for certain time intervals, the r.h.s of the inequality may
be greater than 2, in these time intervals G(τ) is always
smaller than 2. Hence, also in the case studied in this

paper G = 2 constitutes an upper limit for retaining non-
classical features in the output field.

Let us now look at the dynamics of an input Fock
state. We recall that one of the nonclassical features of
such states is that their statistics is subPoissonian. Simi-
larly to what we have done for the squeezed states we an-
alyze the requirements to retain subPoissonian statistics
at the output field. To this aim we introduce the Mandel
parameter Q [1]

Q =
〈n2〉 − 〈n〉2

〈n〉 − 1. (46)

This quantity gives an indication of the statistics of a
quantized field. For a Fock state Q takes its lowest value
Q = −1 while for a coherent state Q is equal to 0. There-
fore, values of Q < 0 indicate subPoissonian statistics,
while Q = 0 indicates Poissonian statistics and Q > 0
superPoissonian statistics. Using equation (31) we derive
the time evolution of the Mandel parameter as follows

Qout =
〈n〉2out+ [G(τ)]2〈n〉in[Qin −〈n〉in]

〈n〉out
, (47)

where 〈n〉out and 〈n〉in are the mean number of photons
of the output and input fields, respectively, and

〈n〉out = G(τ)〈n〉in +
1
2

[G(τ) − 1] + ∆(τ)

= G(τ)〈n〉in + m(τ). (48)

For a Fock input state Qin = −1 and 〈n〉in = n0, hence
the condition for having subPoissonian statistics at the
output is

〈n〉out(〈n〉out + 1) < G2(τ)n0(n0 + 1). (49)

A numerical analysis shows that, as for the squeezing, also
for the subPoissonian statistics, we obtain the limit 2 for
the gain typical of the standard theory of linear amplifiers.

As an example, in Figure 3 we compare the Mandel
parameters of the output fields for an initial Fock state
|n0 = 5〉 in the cases A′ = 0.05 (fast onset of the ampli-
fication and/or small value of the asymptotic gain) and
A′ = 1. From the figure one sees that, for A′ = 0.05, one
can retain subPoissonian statistics of the output field for
higher values of the gain compared to the A′ = 1 case.

4.2 Wigner function

Let us now have a look at the complete statistic of the
output field, by means of the Wigner function. Inserting
equation (22) into equation (25), and putting p = 0 we
get

Wτ (α) =
1
π2

∫ ∞

−∞
d2ξ e−∆(τ)|ξ|2 eαξ∗−α∗ξ

× χ0(G1/2(τ)e−iω0τ/εξ). (50)
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Fig. 3. Mandel parameters of the output fields for an initial
Fock state |n0 = 5〉 in the cases A′ = 0.05 (a), and A′ = 1 (b).
We have set τ0 = 0 and B/A = 10−2 in both (a) and (b). We
indicate with τQ the instant of time at which Q = 0. In the
upper-left corner we indicate the corresponding value of the
gain at τ = τQ: G(τQ).

Inserting the inverse Fourier transform of equation (25)
into equation (50) gives

Wτ (α) =
1
π2

∫ ∞

−∞
d2α0W0(α0)

×
∫ ∞

−∞
d2ξ e−∆(τ)|ξ|2 eb(τ,α,α0)ξ

∗−b∗(τ,α,α0)ξ

=
1
π

∫ ∞

−∞
d2α0W0(α0)

exp
[
− |b(τ,α,α0)|2

∆(τ)

]

∆(τ)

≡ 1
π

∫ ∞

−∞
d2α0Wτ (α|α0)W0(α0), (51)

with

b(τ, α, α0) = α − α0G
1/2(τ)eiω0τ/ε. (52)

In the derivation of equation (51) we have used the prop-
erty that the Fourier transform of a Gaussian is a Gaus-
sian. The quantity Wτ (α|α0) is the propagator which, for
τ → 0, tends to the delta function δ(α − α0).

If the state of the input field is a coherent state |α0〉,
than the Wigner function of the output state reads as

follows

Wτ (α) =
1
π

exp
[
−|α0G1/2(τ)eiω0τ/ε−α|2

∆(τ)+1/2

]

∆(τ) + 1/2
. (53)

The Wigner function of the output state is therefore a
Gaussian. Having in mind the time evolution of G(τ) [see
Eq. (26) and Fig. 1], one realizes that, in a frame rotating
with the frequency ω0, the Wigner function of an input
coherent state |α0〉, with α0 	= 0, moves towards the center
of the phase space for τ < τ0 and then moves away for
τ > τ0, while its width continuously increases.

We now consider the case of an initially squeezed state.
The initial QCF for squeezed coherent state is

χ0(ξ) = exp
[
−1

2
|ξCr − ξ∗e−iφSr|2 + i(ξ∗α∗

0 + ξα0)
]

.

(54)
Here Cr = cosh(r) and Sr = sinh(r) , α0 is the displace-
ment of the input field and z = re−iφ is the squeezing
argument.

For an input squeezed vacuum state (α0 = 0), with
squeezing angle φ = 0, the Wigner function at time τ
takes the form

Wτ (α) =
1
π2

∫ ∞

−∞
d2ξ e−∆(τ)|ξ|2e(αξ∗−α∗ξ)

× exp
[
−1

2
G(τ)|e−iω0τ/εξCr − eiω0τ/εξ∗Sr|2

]
. (55)

This Fourier transformation can be calculated with the
method used in [17], the result being

Wτ (α) = M

{
exp

[ −2α2
x

2∆(τ) + G(τ)(C2r + S2r)−1

]

+ exp

[
−2α2

y

2∆(τ)G(τ)(C2r − S2r)−1

]}

. (56)

Here, αx and αy are the real and imaginary parts of α,
and M is a time dependent normalization constant. We
note that this result is consistent with equations (42, 43)
used in Section 4.1 to study the time evolution of the
quadratures of the field for an initial input squeezed state.
Contour plots showing the time evolution of the Wigner
function are shown in Figure 4a, while in Figure 4b we
show the time evolution of the squeezing of the quadrature
amplitude ũ.

5 Departure from thermal equilibrium

The analytic approach we have described in the previous
section to analyze the onset of the amplification process,
can be used to study how a system departs from an initial
thermal equilibrium situation. In more detail, we consider
the case in which the medium, modelled as an ensem-
ble of two-level atoms, is initially in thermal equilibrium
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Fig. 4. Contour plots of the Wigner function at different times
τ for an input squeezed state with r = 1. We have put τ0 = 4,
A′ = 0.1, nB = B/A = 0.1 (a). Variance of the quadrature ũ as
a function of time, for the same values of the parameters (b).

with the mode of the quantized field. The ratio N2/N1

between the populations of the excited and ground states,
respectively, is therefore given by the Boltzmann factor
N2/N1 = e−�ω0/kBT . The state of the field is a thermal
state at T temperature.

At τ = 0 one switches on pumping lasers which change
the population of the two-level atoms until the condition
of population inversion, necessary for the onset of the am-
plification process, is reached. The pumping lasers alter
the initial condition of equilibrium between the medium
and the system (the field mode). In order to study how the
system departs from the condition of thermal equilibrium
with the two-level atoms medium, we use the solution of
the master equation (18) to calculate the time evolution
of the Wigner function of the field. For an initial thermal
state, the QCF at time τ has the form

χτ (ξ) = e−∆(τ)|ξ|2 exp
[
−

(
〈n〉out +

1
2

)
G(τ)|ξ|2

]
. (57)
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Fig. 5. Time evolution of the temperature of the system for
A′ = 1 (dotted line) and A′ = 0.05 (solid line). For both graph-
ics we have set ω0 = 1014 Hz and nB = B/A = 103. The box
in the top left corner is the ratio between the populations of
the two-level atoms. This quantity does not depend on A′ and
B′ separately, but on the ratio nB = B/A only [see Eqs. (13)
and (14)].

Inserting this equation into equation (25) one gets the
following expression for the Wigner function at time τ

Wτ (α) =
1
π

1
〈n〉out + 1/2

exp
[
− |α|2
〈n〉out + 1/2

]
. (58)

In the last two equations, 〈n〉out is the number of photons
of the output field, as given by equation (48). The Wigner
function of equation (58) is the Wigner function of a ther-
mal state at a temperature T (τ) which varies with time.
The medium is not in thermal equilibrium anymore, since
the pumping lasers change the two-level atoms popula-
tion until the population inversion condition is reached.
However, equation (58) shows that the medium plus the
pumping lasers behave, as far as the system (mode field) is
concerned, as a thermal reservoir at varying temperature
T (τ), as known from the theory of laser cooling [20]. Hav-
ing in mind that 2〈n〉out +1 = coth [�ω0/kBT (τ)] [1], and
using the relation arcoth(x) = [ln(x + 1) − ln(x − 1)]/2
(for x2 > 1), we can express the time evolution of the
temperature as follows:

T (τ) =
�ω0

kB
{ln [〈n〉out + 1] − ln [〈n〉out]}−1 . (59)

Figure 5 compares the behavior of T (τ) for the two cases
A′ = 1 and A′ = 0.05. The figure shows clearly that in
both cases the temperature of the system is constant dur-
ing the damping regime and it starts to increase when
approaching the population inversion at τ = τ0, i.e. when
the change in the population ratio N2/N1 becomes con-
siderable. The increase in the temperature is much higher
for higher values of A′, since in this case the asymptotic
gain is also higher.

In order to characterize further the departure from
the initial condition of the system we look at the von-
Neumann entropy of the field. We use the result obtained
by Agarwal [19] to calculate the dynamical entropy for a
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Fig. 6. Dependence of the entropy increase rate on A′.
The entropy increase rate is defined as ∆S/∆τkB =
[S(τ = 14) − S(τ = 10)] /4kB . In the box in the top left corner
the time evolution of the entropy for the three exemplary val-
ues A′ = 1, A′ = 0.5, and A′ = 0.05 is shown. In all the plots
we have set τ0 = 8, and nB = B/A = 10.

state of the form given by equation (58)

S(τ) = kB {[〈n〉out + 1] ln [〈n〉out + 1]
− 〈n〉out ln [〈n〉out]} . (60)

From direct inspection in the previous equation one sees
that, similarly to the dynamics of the temperature, the
entropy remains approximately constant for τ < τ0 and
begins to increase when τ � τ0. In Figure 6 we show how
the entropy increase rate (in units of kB) changes with
A′; in the box in the top left corner the dynamics of the
entropy for three example values of A′ is shown. For in-
creasing values of A′, the linear increase in the entropy
due to the amplification process is faster and faster. This
result is in accordance with the behavior of the tempera-
ture of the system. In fact, smaller values of A′ correspond
to smaller asymptotic gain and therefore less efficient am-
plification processes.

6 Conclusions

In this paper we have discussed the dynamics of a quan-
tum linear amplifier during the onset of the amplification
process. For an amplifying medium consisting of an assem-
bly of two-level atoms, our theory describes the dynamics
of the output field when the medium passes from a con-
dition in which the population of the atoms is thermal,
to a condition of population inversion characterizing the
amplifying regime.

We have solved exactly the master equation describing
the transient dynamics of the linear amplifier in terms of
the quantum characteristic function. The solution is used
to investigate conditions under which an input nonclassi-
cal field may retain nonclassical features at the output of
the linear amplifier. We derive the analytic expressions for
the output noise, as well as for the squeezing, the Mandel
parameter and the Wigner function of the output field,
and we use them to characterize completely the transient
dynamics of the output field.

Our results are compared with earlier theories of phase
insensitive linear amplifiers which rely on the assumption
that the population inversion is instantaneously reached,
i.e. neglecting the transient regime. We show that also
for a slow onset of amplification, the gain G(τ) has to be
smaller than 2 (the cloning magic number) in order for
the output field to retain initial nonclassical properties.

We conclude the paper analyzing the situation in
which the initial mode of the field and the two-level atoms
medium are in thermal equilibrium at T temperature. An
external laser pumps up the atoms of the medium till the
condition of population inversion is reached. This is an ex-
ample of dynamic departure from a thermal equilibrium
condition that can be studied analytically. We analyze
the time evolution of the temperature and of the von-
Neumann entropy on the characteristic parameters of the
linear amplifier. We find that, as known from the theory of
laser cooling, the medium plus the pumping lasers behave,
as far as the system is concerned, as a thermal reservoir
at varying temperature. We find that the entropy increase
rate depends crucially on the asymptotic gain.
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Appendix A

For integer values of A′ the integral IA′ defined in equa-
tion (27) is given by [18]

I2m(τ) =
sinh τ

2m − 1
1

(cosh τ)2m−1

×
[

1 +
m−1∑

k=1

Γ (m)Γ (m − k − 1/2)
Γ (m − k)Γ (m − 1/2)

(cosh τ)2k

]

, (61)

I2m+1(τ) =
sinh τ

2m

1
(cosh τ)2m

×
[

1 +
m−1∑

k=1

Γ (m − k)Γ (m + 1/2)
Γ (m)Γ (m − k + 1/2)

(cosh τ)2k

]

+
(2m − 1)!!

(2m)!!
arctan(sinh τ). (62)

In this appendix we show that the two equations written
above are special cases of equation (28).

For A′ = 2m ≥ 1 an even integer, the hypergeometric
function reduces to a polynomial of order 1 − A′/2

F [−m, b, c; z] =
m∑

k=0

(−m)k(b)k

(c)k

zk

k!
, (63)
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where

(z)k =
Γ (z + k)

Γ (z)
; (z)0 = 1. (64)

Using equation (63) and the following properties

Γ (z + 1) = zΓ (z)

Γ (−z) =
π csc(πz)
−zΓ (z)

,

equation (28) reduces to equation (61).
For A′ = (2m+1), we obtain equation (62) from equa-

tion (28) by using the properties

− i sinh(τ)F [1, 1 − A′/2, 3/2− A′/2; (cosh τ)2] =

F [1/2 − A′/2, 1/2, 3/2− A′/2; (cosh τ)2]

= F [−m, 1/2, 1− m; (cosh τ)2],

and

F [−m, 1/2, 1− m; (cosh τ)2] =
1

2m
Γ (1 − m)(− cosh τ)mPm

m (i sinh τ), (65)

where
Pm

m (z) = (z2 − 1)m/2 dm

dzm
Pm(z), (66)

with Pm(z) Legendre polinomials.

References

1. L. Mandel, E. Wolf, Optical Coherence and Quantum
Optics (Cambridge University Press, Cambridge, 1995)

2. G. Lindblad, Commun. Math. Phys. 48, 119 (1976); V.
Gorini, A. Kossakowski, E.C.G. Sudarshan, J. Math. Phys.
17, 821 (1976)

3. R.J. Glauber, in Quantum Optics and Electronics, edited
by C. de Witt, A. Blandin, C. Cohen-Tannoudji, Les
Houches 1964 (Gordon and Breach, New York, 1965)

4. R. Blatt, in Fundamental Systems in Quantum Optics,
edited by J. Dalibard, J.M. Raymond, J. Zinn-Justin,
Les Houches LIII, 1990 (Elsevier Science Publishers,
Amsterdam, 1992)

5. F. Intravaia, S. Maniscalco, A. Messina, Phys. Rev. A 67,
042108 (2003)

6. S. Maniscalco, F. Intravaia, J. Piilo, A. Messina, J. Opt.
B: Quant. Semiclass. Opt. 6, S98 (2004)

7. A. Bambini, R. Vallauri, M. Zoppi, Phys. Rev. A 12, 1713
(1975); F.A. Hopf, J. Bergou, S. Varró, Phys. Rev. A 34,
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